
make software better, make better software

 SILVERTHREAD ©2016

Health (forest) ≠ ∑ health (individual trees)

Practitioners and leadership must objectively understand both code quality and design quality.

The JDOE project is a long-lived, complex software system
Like many legacy software systems, JDOE has a checkered history.
JDOE (not its real name) is a ground-based command and control
system. It was originally written in the JOVIAL programming language
over four decades ago and maintained for a decade or two before
being modernized and rewritten in Ada. This “rewrite” involved no
refactoring and was performed simply by translating JOVIAL entities
and relationships into Ada entities and relationships. The Ada version
has since been maintained for a decade or two and supplemented
with additional in Java. The current version is a few million lines of
code. It probably doesn’t surprise anyone that decades of
maintenance and a line-by-line translation has resulted in a very
complicated system to understand. The amount of architectural
entropy that creeps in to a large-scale codebase over decades of
change is significant. And recoding a Jovial-based architecture in Ada
undoubtedly added substantially more entropy since the semantic
differences between the languages were difficult to systematically
comprehend. Finally, any system that survives 40+ years has
undergone substantial personnel changes and organizational
handoffs such that the original architectural intent has been lost.

Why is this case study interesting? It is not as extreme as one might
think. Many organizations have legacy systems that have undergone
similar evolution. Perhaps some of the parameters are extreme but
the pattern is common. We end up with a convoluted architecture
that has been degraded by short-sighted decisions, natural entropy,
discontinuity of personnel, and adaptation to new technological
foundations.

Complexity confusion led to mistrust
When Silverthread leaders were asked to diagnose the health of the
JDOE software, it was perceived as very challenging by everyone:

1. Enterprise leadership: Sustainment of JDOE was perceived
as very high cost per unit value compared to other
benchmarks of productivity within the enterprise.
Deliveries of new versions to fix problems or to add new
features were unpredictable, always over budget, and late.

2. Project management: The pressure from leadership to
improve efficiency, coupled with the pressure from
practitioners to commit to more realistic forecasts, put mid-
level managers into a no-win situation where they were
forced into gaming forecasts and progress reports.

3. Technical teams: Over two thirds of their duty cycle was
mired in overhead activities that were boring and low value.
They felt choked by minutia and process controls.
Management seemed out of touch with the difficulty of
changing a codebase where every change they made had
unpredictable unintended consequences elsewhere. They
had no objective evidence to persuasively make the case
that their job is harder than it seems.

Practitioners begged us to expose their architectural complexity
After presenting a seminar on managing complexity and design
quality, a few of the practitioners of JDOE requested that we scan
their system. They explained their situation in stark terms.

Our team’s software change productivity is low compared
to other systems being maintained in our organization and
other external benchmarks. Our leadership believes that our
Ada codebase is relatively simple because our code quality
metrics are good. They question the capability of our team
and our process as the suspected reasons for our low
productivity. They want us to attend SCRUM training and
improve our methods with “more agile techniques”. We
know our team is strong and we are competent in modern
agile methods. We believe the reason we are unproductive
is because our codebase is extremely complex, the
architecture is degraded, and each change we make
introduces unintended consequences in other components
that we cannot foresee. Can you please, please, scan our
system? We are sure that it will provide objective insight
that help us all understand the true situation.

Quantifying design complexity opened people’s eyes
Silverthread’s scans and reports provided objective measures, or
more honest measures, of both code quality and design quality that
helped each constituency understand the situation better. The code
quality across JDOE components (Figure 1) showed that from this
aspect, JDOE did appear to be relatively simple when benchmarked
against Silverthread’s empirical database of 1000s of projects. Since
JDOE tracked code quality by measuring McCabe complexity for each
component, project management and enterprise leadership felt
confident that the codebase was not that complex.

Figure 1: Code quality measures compared very favorably

Silverthread’s scans also analyze and report on architectural
complexity and design quality. This was a perspective that was new
to JDOE teams. Figure 2 is a visualization of JDOE from a Silverthread
CodeMRI® report. The red portion of the diagram shows a “core” of
11,000 files that are circularly interdependent on each other, directly

make software better, make better software

 SILVERTHREAD ©2016

or indirectly. The core is the component that is most complex and
least hierarchical.

Figure 2: What a very complex code base looks like

The design quality of JDOE (Figure 2) was off-the-chart complex when
benchmarked against Silverthread’s empirical database. This was the
missing link in understanding the true JDOE situation.

Figure 2: Design quality measures were off-the-chart high

How is design quality different from code quality?
Code quality and design quality are complementary product
measures, and both can be extracted objectively from an evolving
code base. Code quality assessments analyze the parts; design quality
assessments analyze the whole. Developers can identify and fix code
quality issues without having much impact on design quality. Code
quality tools identify issues within a part by scanning and analyzing
specific lines of code. But these tools do not quantify design quality.
That is Silverthread’s forte.

Silverthread’s design quality assessments provide insight into the
architectural properties of code bases that make them more
manageable and understandable. When you quantify the
relationships between the parts and the larger scale structures that
they form, you can understand the macro-level health of the forest

along with the micro-level health of the trees. Design quality tools
identify complexity issues by scanning and analyzing dependencies
among all the parts. These insights include visual summaries of
modularity, cohesion, and coupling and quantification of hierarchy
and cyclical dependency.

By scanning a code base, you can extract the structure of a system as
it really is, which is frequently much different than what it was
intended to be. Design documents or design models capture
intentions, but because they are supplementary artifacts that rely on
manual change propagation, they are frequently wrong or out of
synch with the evolving coded product.

Enabling more honest conversations and building trust
JDOE experienced significant maintenance difficulties for years.
Developers felt choked by waste, rework, complexity, unanticipated
side effects, and low morale. Program leadership suffered from an
inability to meet user expectations within a reasonable timeframe
and the loss of credibility in forecasting cost, quality, and release
targets. When complexity grows and measurements are largely
guesswork, trust between development teams and program
leadership dissolves. Quantifying design quality directly from the
evolving code base delivers a critical quid pro quo: less overhead for
practitioners and more insightful dynamic control for management.
When practitioners and managers use the same measures, trust
grows. Increasing trust enables leaner production by reducing sources
of overhead, unnecessary rework, and waste. Trust is the currency of
lean engineering efficiency.

Most organizations like JDOE already use traditional project
management measures like those shown in Figure 4. These process
measures provide only half of the insight you need. Design quality and
code quality are the other half, the more important product measures
that teams need to steer software outcomes more predictably.

Figure 4: Product measures complement process measures

Contact Us

Silverthread’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.
http://silverthreadinc.com

Large core
indicates lack of

modularity

