
make software better, make better software

 SILVERTHREAD ©2016

More honest earned value management of software projects

Earned value should focus more on the progress and quality of the product, not the process.

Why is earned value management so hard for software systems?
Earned value management (EVM) is a means of determining the
financial health of a project by measuring whether the work
completed to date is in line with the budget and schedule planning.
The basic parameters of an earned value system, usually expressed in
units of dollars, are listed below and illustrated in Figure 1.

• Expenditure plan: The planned spending profile for a project
over its planned schedule.

• Actual cost: The actual spending profile for a project over its
actual schedule.

• Actual progress: The technical accomplishment relative to the
planned progress underlying the spending profile.

• Earned value: The earned value represents the planned cost of
the actual progress.

• Cost variance: The difference between the actual cost and the
earned value. Positive values show over-budget situations.
Negative values show under-budget situations.

• Schedule variance: The difference between the planned cost
and the earned value. Positive values correspond to behind-
schedule situations. Negative values correspond to ahead-of-
schedule situations.

Figure 1: The basic parameters of an earned value system

For development programs, especially innovative efforts, actual
progress is by far the most subjective and challenging assessment of
all the parameters in an earned value system. Most projects know
exactly how much cost they have incurred and how much schedule
they have used. The variability in making accurate assessments of
financial health is therefore centered in the fidelity of the actual
progress assessment. Being subjective, it is easy to game.

Conventional earned value methods are based on a few assumptions:

• There is a linear relationship between resources expended
and actual progress.

• The effort needed to achieve progress is predictable.

• Projects can plan the levels of effort and time in advance.

• Actual progress toward completion is straightforwardly
assessable and measurable.

• The expected scope of the project captured in its
requirements and baselined in budget and schedule targets
is well understood and relatively static.

These assumptions hold for many routine civil engineering efforts,
such as paving a road. If you have expended 5000 worker-hours to
pave a 10-mile road, it will probably take another 20,000 hours to
finish the full 50 miles planned. Software-intensive development
projects require innovation, and like pharmaceutical research, start-
up businesses and movie production, they start with incomplete
information and significant uncertainties. The most critical progress is
achieved primarily by reducing uncertainties. This is best enabled
through executable demonstrations whose performance, usability,
and function can be judged more objectively.

The realities of software-intensive systems violate the following
assumptions, which form the basis for earned value management:

• The relationship between effort and results is nonlinear and
typically follows more of a Pareto curve, where 80% of the
value is achieved from 20% of the effort. The breakthrough
validated learning occurs in relatively few critical activities,
which are usually in design and integration testing.

• Early estimates of the planned work have high uncertainty.
The variance in the initial project estimate (of effort or
duration) is a measure of the missing project information.
As the team gains knowledge and reduces uncertainty, the
variance reduces, and estimation accuracy improves.

• No laws of physics or properties of materials constrain the
problems or solutions of most software professionals. They
are bound only by human imagination, economic
constraints, and platform performance.

• In most software projects, you can change almost anything
at any time: plans, people, requirements, milestones,
designs, tests, and funding. Requirements — probably the
most misused word in our industry — rarely describe
anything that is truly required. Nearly everything is
negotiable. So even if you could measure against an
expectation, the expectation is constantly evolving.

As system design and development have become more and more
dependent on software, experience with earned value management
has become more problematic, and even unintentionally dishonest.
The standard usage models do not accurately reflect the true health
and status of software development and maintenance projects, as
shown in Figure 2. The DoD and commercial industries have
frequently experienced projects where 90% of the resources (time or
cost) were expended after 90% of the earned value was claimed. With
honest earned value, such reporting mistakes should not occur.

make software better, make better software

 SILVERTHREAD ©2016

Figure 2: Honest earned value shows progressions and digressions

There are successful software projects that have used earned-value
management effectively; they are rare. One precedent is the
Command Center Processing and Display System-Replacement
(CCPDS-R) project, a large USAF project delivered in the 1990s and
well documented in a thorough case study. The modern steering
profile on the right side of Figure 2 is a rough representation of the
honest earned value approach used on CCPDS-R. TRW delivered the
system on-budget and on-schedule, and the user got more than they
expected. CCPDS-R was highly innovative and pioneered many new
technologies, including the Ada programming language, a service-
oriented architecture, reusable middleware, iterative development,
employee profit sharing, and meaningful design quality metrics
derived directly from the code base. CCPDS-R used technical metrics
extracted directly from the evolving design, code, and test baselines
for assessing actual progress and quality trends with more honest
correlation to ground truth. This established credibility and trust
among stakeholders and substantially reduced overhead.

How can we transform to more honest earned value?
To apply earned-value management to software programs more
effectively, we must account for the nonlinearities of development
progress and the uncertainties of innovation. A few key principles that
can resolve this problem correlate well with accepted best practices
in modern software development like lean, agile, and DevOps.

Transparently express honest, validated learning. Rather than a linear
progression of monotonically increasing earned value, a healthy
project will exhibit an honest sequence of progressions and
digressions. Validated learning, which usually results in a near term
regression, is the true measure that uncertainty is being reduced and
estimates to complete are higher fidelity. Progress is measured
through evolving demonstrable capability and refactoring (periodic
digressions). Quality is measured through performance and usability,
as well as scrap, rework, and defects extracted from release baselines
and supporting artifacts.

Communicate with distributions, not expected values. Software
designs and plans must be treated as a sequence of predictions with
explicit uncertainty, as shown in Figure 3. Needs and designs emerge
over time from a coarse vision with a wide variance (more
uncertainty), to more precise, testable specifications with narrowing
variance (less uncertainty). Nearly everything is negotiable early in
the life cycle, and the feature set and operational characteristics
remain negotiable as tradeoffs evolve from speculative debates to
objective decisions.

Figure 3: Transforming to probabilistic targets for steering

Forecasted measures of actual progress, earned value, and planned
estimates to complete should be captured as distributions of
probable outcomes. It is fine to communicate an expected value, but
a more honest exchange would include a discussion of the variance.
Why are you confident (narrow variance)? Why are you uncertain
(wide variance)?

Pay attention to precision. Measurement precision and fidelity should
improve along the life cycle. As validated learning increases and
uncertainties are resolved, more precision is appropriate. Precision in
the life-cycle artifacts should be added as uncertainties are resolved.
Unjustified precision, especially in early requirements, designs,
forecasts, or plans, has proved to be a substantial source of future
scrap, rework, and waste. The most common failure pattern in the
software industry is to develop a five-digits-of-precision version of a
requirement specification (or design, or plan) when you have only a
one-digit-of-precision understanding of the problem. Unfortunately,
many stakeholders demand early precision because it gives them
(false) comfort in the progress achieved. Emphasis on accurate yet
imprecise estimates with a discussion of the uncertainties remaining,
namely the reasons for imprecision, builds trust.

Measure the product as well as the process. Assess earned value from
the design, code, and test base evolving through successive life-cycle
checkpoints. Direct measures of the code and test base are objective
facts and mostly signal. Measures of the process and other supporting
artifacts are indirect indicators and more subjective guesses. They are
noisier and easier to game. Traditional project management
measures focus on the efficiency and agility of the process. But these
process measures provide only half of the insight you need. Design
quality and code quality measures are the other half, the more
important product measures that teams need to steer software
outcomes more predictably. Business agility is as much a function of
product design as it is of process.

Contact Us

Silverthreads’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.
http://silverthreadinc.com

