
make software better, make better software

 SILVERTHREAD ©2016

Quantify design quality. It is the crux of instrumenting a lean transformation.

Business agility is as much a function of architecture as it is of process.

Are you wasting too much time in overhead work?
Everyone involved in a software supply chain is perturbed by this
provocative statement:

40 to 60% of your resources are consumed in
non-value-added effort.

Executives, project leaders, and developers know they spend a huge
amount of time and effort in waste, rework, and other unnecessary
overhead activities that need to be streamlined, automated, or
eliminated. Everyone feels this pain.

What is overhead work? What is value-added work?
This topic rattles nerves. A precise answer must be context-
dependent, but the following definitions are based on categorizing
the artifacts produced in software delivery, where increments of
usable functionality are produced by constructing a deliverable
product and supplemental artifacts.

• Value-added work involves creating the deliverable product.
This is what users buy. It is captured in the primary intellectual
capital: designs, code, data, tests, and build scripts.

• Overhead work involves creating supplemental process artifacts
like plans, requirements, models, progress reports, quality
assessments, traceability, training, and proof of compliance .

Some overhead is necessary to manage a software delivery. However,
when organizations become inefficient and fatty, it is usually because
of unnecessary overhead work.

With a basic understanding of what is value-added and what is not,
your teams can better reason about where to improve efficiency. This
is the crux of lean transformation and improved software economics:
Minimize the resources consumed on non-value-added work, freeing
up more resources for value-added work. When a team explicitly
differentiates overhead activities from productive activities, as shown
in Figure 1, discussions heat up. Try this exercise with teams in your
own context.

Figure 1: A typical allocation of overhead vs. value-added work

Start by dividing your activities into two lists: overhead activities and
value-added work. This exercise alone is a powerful catalyst for
debating what is value-added and what is not. Then prioritize the lists

to identify the top few overhead efforts that are consuming too many
resources and the top few value-added efforts that would benefit
most from more resources. Whether you manage engineers,
marketers, operators, developers, or finance professionals, this
process will result in eye-opening debates.

Two recurring themes have surfaced from such exercises. First, the
top item on the overhead list is invariably late rework. The primary
root causes of late rework are poor design quality and protracted
design verification. Second, the most wasteful overhead activities are
usually burdened onto developers, and the value-added
improvement priorities are targeted at the leadership team. In most
organizations, the bottleneck is at the top of the bottle.

Where does all this wasted effort come from?
Figure 2 illustrates three primary sources of waste: unnecessary
overhead, unnecessary rework, and building the wrong things.

Figure 2: Complexity translates into waste, rework, and overhead

In a perfect world, developers would understand macro-level design
intentions, code the individual components, integrate them, and
deliver an error-free system into production. In our imperfect world,
we must introduce supplemental artifacts to manage teams of error-
prone humans, who communicate ambiguously, and we must rework
most artifacts multiple times to deliver complex software system. It is
this complexity, and the resulting miscommunications and human
error, that result in higher overhead. Complexity of architecture,
complexity of code, complexity of communications, complexity of
process, and complexity of change all contribute to overhead.

Software is both complex and complicated. It poses significant
challenges for teams of people to understand and communicate in
unambiguous ways. For executives, architects, and project managers,
this complexity translates directly into uncertainty and high variability
in outcomes.

How do we reduce uncertainty and better manage complexity?
One starting point is better measurement.

Scientists define measurement as an observation that reduces
uncertainty, where the result is expressed as a quantity.
(Douglas Hubbard, How to Measure Anything, 2010)

make software better, make better software

 SILVERTHREAD ©2016

The foundations of agile methods, DevOps principles, and lean
systems engineering revolve around measuring velocity, using smaller
batch sizes, failing fast, improving collaboration, accelerating
feedback cycles, and reducing waste. These techniques manage
complexity implicitly and explicitly by quantifying progress and quality
trends to attack uncertainty earlier.

Stephen Covey coined the term “the speed of trust” to identify trust
as the element necessary to reduce overhead and improve efficiency
and effectiveness (The Speed of Trust, 2008). The speed of trust can
also be appreciated by its logical opposite: the slowness of distrust. In
most software enterprises, overhead activities are proportional to the
amount of distrust. Complexity leads to uncertainty, which leads to
distrust. Some distrust is healthy, because humans make errors and
poor judgments. Some levels of oversight, planning, reporting,
documentation, and assurance are needed to deliver quality
outcomes predictably. However, when overhead activities waste
resources, the value achieved is out of balance with the cost and
inconvenience. The system becomes inefficient and outcomes
degrade.

How can we measure design quality?
Quantifying design quality is one of the software industry’s holy grails.
Our research and field applications demonstrate valuable insights
that can be realized through code scans and visualized through design
structure matrices (DSMs). These are a few axioms of design quality:

1. Design quality is the dominant factor in long-term software
economic outcomes.

2. Better design quality is analogous to a lower interest rate
on technical debt.

3. Design quality drives the breadth and depth of
interpersonal communications across the enterprise.

4. Design quality involves economic tradeoffs between
efficiency (resources consumed) and effectiveness (user-
delivered value).

5. Design quality is best measured by quantifying structural
analytics (efficiency) and integrated test analytics
(effectiveness).

The last axiom asserts two specific classes of measurement. Structural
analytics provide quantifiable measures of design quality that can be
extracted from a code base. More structural complexity leads directly
to more overhead and to inefficiencies in managing communications
among people and activities across teams. Integrated test analytics
provide measures of defects and change trends from configuration
control and issue tracking tools. Quantifying the resources consumed
to change a system allows teams to understand the consequences of
structural complexity and design quality in economic terms.

The word agility means speed of change. Your change speed must be
an asset, not an anchor. Correlating change costs for defects, new
features, and other engineering changes allows validated learning to
be optimized and projects to be steered toward better economic
outcomes. Software agility is as much a function of architecture as it
is of process. The most important characteristic of software is that it
is “soft.” The easier software is to change, the easier it is to achieve
any of its other needed attributes.

How can we start transforming?
Efficiency in execution is best achieved through improved design
quality and reduced complexity. Software delivery teams should
target 20 to 30% overhead. Quantifiable improvements in efficiency
are usually step 1 in a lean transformation, as shown in Figure 3. Cost
analytics are more mature than value analytics. Nothing raises the
morale of developers more than reducing overhead.

Figure 3: Improve lean efficiency, then improve effectiveness

We recommend using these four primary threads to transform the
efficiency and effectiveness of software delivery incrementally.

1. Steer: Measure the product artifacts, not the process
artifacts, for more honest insight. Measuring design quality
enables optimized steering and reduces the overhead and
waste of late rework.

2. Develop: Accelerate feedback cycles through agile methods
and early design quality verification. Agile methods shift
emphasis from the overhead of supplemental artifacts to
the value-added artifacts of design, code, and test.

3. Deploy: Automate the build and release process to reduce
friction during deployment. Checkpointing design quality
and complexity growth with each deployment makes
technical debt manageable.

4. Collaborate: Unify methods and tooling across the software
supply chain for holistic efficiencies. Measuring code quality
and design quality balances user-perceived quality with
economic improvements.

Silverthread’s capability and know-how can be a catalyst for your lean
transformation. Quantifying design trends encourages more honest
and trustworthy exchanges among stakeholders. Increasing trust
enables leaner production by reducing sources of overhead,
unnecessary rework, and waste. Trust is the currency of lean
engineering efficiency.

Contact Us

Silverthread’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.

http://silverthreadinc.com

http://silverthreadinc.com/

