
Abstract
A Department of Defense (DoD) customer with a legacy Java system was experiencing development delays and budget
overruns due to poor design quality and architecture. Silverthread’s CodeMRI® Platform identified areas in the system
where architecture had degraded and outlined a technical health improvement plan that involved refactoring the
codebase over four months using 25% of developer labor, resulting in key software economic outcomes.

Result: Refactoring the legacy system doubled developer productivity and reduced the cost to create a feature by 45%.

Customer Use Case:
Refactoring for Software Economics

©2019 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114
www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

Problem
A software development team for a DoD system was
consistently missing project deadlines and running over
budget due to the degraded health of the legacy codebase
they were working in. The software team was spending
significantly more time fixing bugs than producing new
features. Executives were becoming increasingly frustrated
with the software team as deadlines were not being met and
budgets being overrun, however, they were not willing to
make any further investment until the development team
could provide them with data proving that they needed the
capital. The development team was having a hard time
working with such inefficient code, but did not have the
design insight to refactor the code themselves or to estimate
the financial returns on refactoring vs rewriting the codebase.

Diagnostic Assessment
Silverthread’s CodeMRI® Diagnostic reports determined that
the slowdown was due to poor design quality and found a
large ‘Critical Core’ in the codebase. A ‘Core’ is a group of files
that break traditional code structure hierarchy, leading to
cyclical demands and eventual gridlock.

Silverthread additionally used its ROI Estimator to ascertain
whether it was financially prudent to refactor the existing
codebase or if it would make more sense to replace the
system with a new codebase at a higher architectural
standard. This codebase was determined to be an excellent
candidate for refactoring, with a high anticipated ROI.
Developers and the executive team were finally able to
communicate and determined together to being refactoring
the codebase.

Solution: Refactor existing system
Using Silverthread’s technical health improvement plans,
developers were able to identify and attack areas of
especially poor quality in order to quickly increase the design
quality of the system. The team iteratively selected some
recommended changes to act on, fixed them, and generated
new improvement plans to check results and explore what to
do next.

The tool proposed an order to attempt the refactoring
process, but the engineers were free to pick and choose
which steps they wanted to work on first. Proposed steps
that seemed especially difficult were skipped, and those
deemed low-risk were done first. Developers likened the
experience to “untangling fishing line” with the benefit of
an expert system to guide them. Some knots that were
originally very difficult became much more feasible to
attack once others around them are removed. CodeMRI®
Care also caught and prevented new problems from being
introduced that normally would have been missed and
left to fester. This included a large amount of faulty code
that would have created another Critical Core in the
system. CodeMRI® Care caught this immediately and was
able to flag and reverse the damage. Over 4 months, the
team successfully eliminated the 800+ file Critical Core
and all other emerging architectural issues.

Economic Outcome - “Twice as productive”
The resulting refactoring effort produced a number of key
results:
• Revenue/capabilities: Developers were now “twice as

productive”
• Cost savings: 52% reduction in wasted software

investment

Improving the codebase rapidly led to improved
development speed and productivity, and lower cost and
risk. The development team reports that the investment
in technical health improvement “paid for itself” in
productivity and quality gains in the span of a few
months, with a strongly positive ROI. The development
team say that it is now easier to incorporate new
developers into the team. Learning curves have been
shortened. The team was able to “throw out” a manual
for rookies with tips, tricks, and warnings about side-
effects that could be triggered in the previously fragile
system, as it was no longer needed. Features are
developed and shipped twice as fast at half the cost, with
more predictability and fewer defects.

About Silverthread
Silverthread is the market leader in software economics – helping executives take financial control over complex software assets.
Based on 15 years of applied research at MIT and Harvard Business School, the CodeMRI® platform of tools allows organizations to
translate software architectural health metrics into quantifiable business impacts. We have helped over 100 global commercial and
government institutions and programs gain visibility into their software asset health, and dramatically improve operational and
financial outcomes.

Diagnose System
• 1 Critical Core identified
• 62% of every dollar wasted

Develop Course of Action
• Financial ROI - High ROI, 4 months

payback
• Technical Improvement Feasibility -

80% reduction of Core within 106 steps

Complete Refactoring
• Critical Core eliminated
•Nearly all Core LOCs removed
• 52% reduction in waste

Set Plan: Refactor System
• Remove ‘Critical Core’ of 800 files
• 25% of labor dedicated

Monitor Progress
• Run CodeMRI® Care to

track and manage progress

STE
P6

Install Continuous Controls
• Run CodeMRI® Care to ensure

architectural integrity

Customer Use Case:
Refactoring for Software Economics

TECHNICAL HEALTH

96%
of Core files
eliminated

16%
fewer bugs

released

ECONOMIC OUTCOMES

33%
of developer
FTE optionality

52%
less waste

per dollar invested

76%
increase in lines
of code per year

`

Customer Outcomes

Customer Journey

Design Quality Code Quality Capabilities Optionality Cost Savings

Why Refactor?
Systems are often developed without continuous architectural and design support. As code is continuously added to a database, a lack of
architectural guidelines allow code to grow against the design hierarchy, which creates complex and unwieldy codebases that are difficult to work
in and prone to bugs. As codebase complexity grows, speed of delivery, agility, quality, and schedule are harmed. Most organizations do not track
hidden costs in their codebases such as technical debt and code depreciation. They are often surprised when ill effects of complexity begin to
outweigh the benefits of continued use of a system. Rather than scrap a codebase (which typically represents thousands of hours of work),
refactoring allows companies to fix these issues of technical debt and code depreciation while still allowing the codebase to continue to run. This
provides the least amount of interruption to typical processes and can be much faster and less expensive than starting from scratch.

©2019 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114
www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

STE
P1

STE
P5

STE
P2

STE
P3

STE
P4

”Feature
development is

faster, easier, and
less expensive than

ever before”

