
make software better, make better software

 SILVERTHREAD ©2016

Primer on design quality, the (more important) half of steering software projects

Durable business agility = product agility * process agility. You need both.

Process measures are not enough
Most software leadership steers and evaluates projects by measuring
the development process. A very common failure pattern is to create
micromanaged process controls that burden development teams
with unnecessary overhead and frustrating busywork. Using
techniques like Gantt charts, critical path analysis, CMMi, or earned
value management, leadership gains process control and insight, but
only limited product control and insight. The foundations of modern
agile methods, DevOps principles, and lean systems engineering
revolve around quick software delivery, faster feedback cycles, and
analytics that quantify evolving product releases.

The secret of software measurement
Building on lean measurement techniques, we need to quantify work
in progress, not activities in process. This means measuring code in
the product pipeline and relying less on measures of the
supplemental artifacts of the process pipeline. The direct measures of
the code base are more factual and trustworthy mechanisms for
steering software delivery projects.

Many enterprises measure code quality of the code subjected to unit
testing. This is not enough. Decades of Harvard/MIT research and
field experience provide strong evidence that the design quality of the
code base subjected to integration testing correlates better with
economic outcomes. Figure 1 illustrates a typical set of metrics from
a large vendor of commercial software products.

Figure 1: The typical impact of design quality

How is design quality different from code quality?
Code quality and design quality are complementary product
measures, and both can be extracted objectively from an evolving
code base. Code quality assessments analyze the parts; design quality
assessments analyze the whole. Developers can identify and fix code
quality issues without having much impact on design quality. Code
quality tools identify issues within a part by scanning and analyzing
specific lines of code. Many code quality tools measure McCabe
complexity. SonarQube identifies “bad smells” such as “if” ”elsif”
constructs with no final “else”; Coverity identifies likely buffer
overflows; and HP Fortify identifies likely security vulnerabilities. But
these tools do not quantify design quality. That is Silverthread’s forte.

Silverthread’s design quality assessments provide insight into the
architectural properties of code bases that make them more
manageable and understandable. When you quantify the
relationships between the parts and the larger scale structures that
they form, you can understand the macro-level health of the forest
along with the micro-level health of the trees. Design quality tools
identify complexity issues by scanning and analyzing dependencies
among all the parts. Some insights include:

• Visual summaries of modularity, cohesion, and coupling

• Quantification of hierarchy and cyclical dependency

• Quantification and identification of commonality and reuse

By scanning a code base, you can extract the structure of a system as
it really is, which is frequently much different than what it was
intended to be. Design documents or design models capture
intentions, but because they are supplementary artifacts that rely on
manual change propagation, they are frequently wrong or out of
synch with the evolving coded product.

Why should we invest in understanding design quality?
The most important characteristic of software is that it is “soft.” The
faster and easier software is to change, the faster and easier it is to
achieve other required characteristics. Higher design quality leads to
more predictable delivery, more understandable systems, and easier
adaptation. Design quality is a relatively intuitive measure that gives
both technical and nontechnical managers improved insight and
control when leading a software development effort. Better design
quality of the architecture subjected to integrated testing is the
dominant factor impacting long-term durability, quality, business
agility, and market agility.

You probably already use traditional project management measures
like those shown in Figure 2. These process measures provide only
half of the insight you need. Design quality and code quality are the
other half, the more important product measures that teams need to
steer software outcomes more predictably.

Figure 2: Product measures complement process measures

make software better, make better software

 SILVERTHREAD ©2016

Principles of good software design
Software-based systems are so large and complex that no single
person can understand how everything works. There are no laws of
physics to constrain solutions. Software systems are complex
networks of unbounded abstractions and an unbounded number of
connections. System designers use well-accepted architectural
principles to gain control over this complexity. These principles allow
a complex system to be decomposed into more understandable
chunks so that teams of cognitively bounded humans can work on
different parts as independently as practical.

How can we measure design quality?
Objectively understanding design quality is one of the software
industry’s holy grails. Our research and field applications demonstrate
valuable insights that can be realized through code scans and
visualized through design structure matrices (DSMs). A DSM is a visual
representation of the network of entities and relationships that make
up a software system. We will elaborate these later, after we establish
a foundation of principles.

Here are a few axioms of measuring design quality:

1. Design quality and structural complexity are context-
dependent. Higher quality is in the eyes of the beholder.

2. Design quality is the dominant factor in long-term software
economic outcomes.

3. Better design quality is analogous to a lower interest rate
on technical debt.

4. Design quality drives the breadth and depth of
interpersonal communications across the enterprise.

5. Design quality should be understood and quantified before
investing heavily in code quality.

6. Design quality involves economic tradeoffs between
efficiency (resources consumed) and effectiveness (user
satisfaction with the value delivered).

7. Design quality involves architectural tradeoffs between
static compile-time structures (the code base) and dynamic
run-time interactions (system behaviors in integrated
testing).

8. Design quality is best measured by quantifying structural
analytics (efficiency) and integrated test analytics
(effectiveness), as illustrated in Figure 3.

Figure 3: Balancing efficiency and effectiveness

The last axiom asserts two specific classes of measurement. Structural
analytics provide quantifiable measures of design quality that can be
extracted from a code base. More structural complexity leads directly

to more overhead and inefficiencies in managing communications
among people and activities across teams. Integrated test analytics
provide measures of defects and change trends from the
configuration control and issue-tracking tools. Quantifying the
resources consumed to change a system allows teams to understand
the consequences of structural complexity and design quality in terms
of economic efficiency. Figure 4 illustrates basic design quality
measures through a few quantifiable aspects of structural complexity.

Figure 4: First-order measures of design quality

Design Principle 1: Modularity
Modular systems have separate parts that are cohesive (atomic units
that perform a well-defined function) and loosely coupled (operate
independently) with the other parts of the system. Modularity allows
a complex abstraction or component to be organized into separate
parts. Benefits of modularity include:
• Locality of change impact
• Atomic functions for more understandable parts
• Optimal assignment across teams of diverse skill
• Diversification of risk (in the same way that diversifying financial

investments minimizes risk of financial loss)

Design Principle 2: Hierarchy and noncircular dependencies
Dependencies among modules should flow in one direction – from
higher levels to lower levels in a hierarchy. Circularity or bi-directional
dependency among modules should be minimized to avoid confusion
and unintended consequences. When dependencies and control flow
one way, from top to bottom without circularity, the system is called
hierarchical. Control elements usually exist at the top of the
hierarchy, while shared utilities reside at the bottom. Benefits include
the flexibility to:
• Design bottom-up, top-down, or middle-out
• Scale up without increasing complexity
• Divide and conquer applications into more manageable pieces

Design Principle 3: Layering
Complicated abstractions can be simplified through layering multiple
levels of classes and services so that consistent capabilities can be
provided across varying platforms (of software, middleware,
hardware, or third-party applications). The TCP/IP communications
protocol hides an enormous amount of complexity (such as hardware
transport, addressing, routing, packetization, and data quality
checking) and provides a simple interface for using the internet.
Layering benefits include:
• Simplified abstractions and complexity hiding
• Commonality, reuse, and transportability of code
• Simple, understandable APIs

make software better, make better software

 SILVERTHREAD ©2016

Design Principle 4: Commonality and reuse
Similar functions should be performed by single pieces of code. When
code is cut and pasted, then modified into multiple pieces of similar
function but different coded implementation, change management
becomes more complicated. Such duplication adds cost, complexity,
and bloat without adding value. Benefits of commonality include:
• Reduction of rework and change management overhead
• More resilient and reliable common elements
• Fewer lines of code and simpler designs

Design Principle 5: Balanced complexity and code quality
The complexity contained inside a module or layer should maximize
understandability. Code is written once but is read many times,
frequently by multiple people. Cohesive, self-documenting, and
understandable coding practices are important. If a module becomes
too big for a single person to understand, it should be split. If the
numbers of modules within a component, subsystem, or layer
become too interdependent or complex for an architect to
understand, they should be refactored. Benefits of balanced
complexity include:
• Understandability of a system’s subsystems and modules
• Simplified testing, diagnosis, and modification
• Simplified allocation across teams of people

Visualizing design quality

Every code base, no matter the language, size, age, framework, or
programming paradigm, can be thought of as a collection of entities
and relationships between entities. Entities include source code files,
functions, classes, methods, data types, modules, components, and
layers. Relationships include call, encapsulate, subclass from, and
depends on. DSMs capture entities and relationships as networks of
dependencies. They organize the entities into modules and logical
components that illustrate the cohesion and coupling extracted
directly from the source code. Modules and components are arranged
so that those lower in the component hierarchy are further to the left,
and those higher in the hierarchy are further to the right. After 15
years of Harvard/MIT research capturing a diverse spectrum of
systems, we found recurring patterns of good and bad quality. Figure
5 illustrates two DSMs that are typical for the opposite ends of the
quality spectrum.

Figure 5: DSMs help us visualize design quality principles

The modular DSM on the left exhibits locally tight coupling within
components but relatively loose coupling among components. The

alarming structure on the right exhibits tight coupling across a large,
dominant core component (red), with smaller peripheral
components. The “core” is the component that is most complex and
least hierarchical.

An ideal DSM looks like the illustration in Figure 6. Better quality
systems exhibit no overly dominant core component that has
substantially higher complexity than other components. They tend to
have a horizontal layer of hierarchical control dependencies from a
well-structured control component, with very few other component-
to-component dependencies. They also tend to have a vertical
column of dependencies for shared utilities and reusable services,
APIs, classes, and data elements.

Figure 6: An idealized design structure matrix

How to read a design structure matrix
Assessing good design quality indicators and red flags from DSMs
starts with some simple first-order observations. Human judgment is
usually required to validate assessments in context, and many
second-order analyses are usually needed to draw meaningful
conclusions with confidence.
Modules along the diagonal. Files in the same module are placed side
by side so that dependencies between modules combine to form
logical components along the diagonal.
Cohesion and coupling. Many dependencies inside modules indicate
high degrees of cohesion. Relatively fewer dependencies outside
module boundaries indicate lower external coupling.
Commonality and reuse. Vertical bands on the left side of the matrix
indicate reused modules at the bottom of the hierarchy.
Control elements. Horizontal bands on the bottom of the matrix
represent control elements at the top of the hierarchy.
Hierarchical/noncyclical module dependencies. Intermodule links
positioned below the diagonal flow in a single direction, from the top
of the component hierarchy to the bottom. Links above the diagonal
flow in both directions and indicate cyclicality.
Cyclicality contained. Circular dependencies should be mostly
isolated within components. They represent significant complexity
and should be isolated to a single developer or team.
Small modules. Modules should be limited in size, including lines of
code, dependencies, data, entities, and relationships. As modules
grow, becoming overly complex and unmaintainable, they should be
refactored and split into smaller parts.

make software better, make better software

 SILVERTHREAD ©2016

Ideal-looking DSMs, like the one in Figure 6, rarely show up in
practice. In Silverthread’s database of empirical results, spanning
thousands of projects, more than 85% of our scanned code bases look
more like Figure 7, with obvious challenges in understandability,
complexity, and malignant change propagation. One root cause is a
lack of insight into how complexity grows as code bases are evolved
over long periods of release and maintenance.

Figure 7: A typical design structure matrix with issues

Excess coupling. With numerous and expanding dependencies
outside component boundaries, teams experience increased
difficulty in understanding design intentions and anticipating the side
effects of changing modules.
Cyclicality in a complex core. Although developers believe the system
in Figure 7 has balanced components, a large overly complex
component dominates the defect reports and volume of changes.
Team coordination problems. Development teams cannot operate
independently because of coupling between the components for
which they are responsible. The result is lots of meetings and
excessive communications overhead.

What a large-scale DSM can look like
Understanding a quantified and visual perspective of design quality,
especially in large-scale, long-lived evolving software systems, allows
a team to manage technical debt, understand the relationships
among teams, and improve the predictability of changes. Figure 8
shows a component view extracted from a larger scale aerospace
application using CodeMRI® tools. In this software code base, about
4,500 files are connected by 500,000 interfile dependencies. When
printed as a poster and appropriately labeled, this view was an eye-
opener for the development team. They were surprised by many of
the dependencies and insights that were exposed by the DSM.

Many aspects of good design quality are shown in Figure 8. Vertical
bands indicating reuse are evident. Higher within-module coupling
and lower external cohesion are also apparent. Circularity tends to be
contained within modules. Some modules are arguably too large. Of
the more than 500,000 dependencies, only about 10,000 illegal
intermodule dependencies exist above the diagonal. While this was a
relatively good result, it still identified many opportunities for the
team to improve design quality and reduce the malignant changes
they were occasionally experiencing.

Figure 8: A large-scale DSM

Silverthread’s CodeMRI® capability

Complex software systems should be structured as hierarchies of
modules with reuse. Module dependencies should be explicit and
noncircular. Modules should be small enough to be managed by a
team. For simplicity, individual modules should have low McCabe
Cyclomatic complexity scores. Reports produced by Silverthread’s
CodeMRI® tools highlight these module properties as well as
architectural complexity.

Understand the structural complexity of your architecture
In a software system of reasonable size, a development team should
be able to identify these sources of structural complexity:

• Distinct software components and modules

• The source code files that belong to each

• Dependencies among components and modules

• Core components, the highly complex regions in a code base
where quality and productivity problems accumulate

• Files with high McCabe Cyclomatic scores, the complex elements
in a code base where quality suffers

CodeMRI® views, metrics, and benchmarks can help to diagnose your
current design health and identify opportunities for improvement.

Contact Us

Silverthread’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.

http://silverthreadinc.com

Unexpected
relationships

