

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

Play offense: How to pull the trigger on a software refactor or rewrite
Measuring design quality can help you act decisively and manage change.

Why refactor or modernize a code base?
A software system is well designed when its code base adheres to
certain principles that enable agility, maintainability, and
understandability. These include modularity, layering, hierarchy,
inheritance, and reuse. When designed well, code bases have
properties that allow individual parts to be changed separately
without being overwhelmed by unintended consequences.
Unfortunately, design quality tends to degrade as a code base grows
and evolves. It becomes difficult or impossible for developers to
visualize the system and understand how it works. When this
happens, estimation fails, defect rates increase, productivity drops,
schedules slip, and costs rise.

Efforts to improve and stabilize design quality can yield substantial
rewards in agility, maintainability, and cost. Figure 1 shows the result
of an effort to improve design quality in a video game development
studio. After a refactoring effort where design quality was improved
in objectively measurable ways, the enterprise could release many
more revenue-generating games per year.

Figure 1: Revenue impact of one successful refactoring effort

Refactoring is an untapped opportunity.
Despite the benefits, there is a systematic underinvestment in
software modernization. Leaders play defense instead of offense.
Some of the reasons include:
• Targeting: Selecting which systems in a portfolio should be done

first is a complicated decision.
• Resources: Refactoring impacts resources allocated to

immediate concerns, such as new features and bug fixes.
• Attribution: The software economic impacts of poor design

often result in finger-pointing and blame.
• Problems found late: Risk, quality, productivity, and morale

problems appear long after code has degraded.
• Track record: Past refactoring or rewrite efforts failed to

improve design quality or software economics.
• Uncertainty: The economic returns of modernization are long-

term and are forecast with some uncertainty, whereas the costs
are near-term and tangible.

Large-scale refactoring efforts have traditionally presented significant
technical risk. Some development teams have gone down blind alleys

and produced new systems no better than the ones being replaced.
This is because managers and architects have struggled to:

• Identify structural issues in the code base accurately and
objectively

• Prioritize the elements with the highest ROI
• Determine which changes will fix underlying problems

During 15 years of Harvard/MIT research capturing a diverse
spectrum of systems, we found recurring patterns of good and bad
quality and correlated their impact on software economics. Figure 2
shows the results of one study of a large commercial software
product. We found that teams developing and maintaining code with
better design quality were more than twice as productive and spent
far more time playing offense (implementing features) than defense
(fixing bugs).

Figure 2: Design quality impacts economic outcomes significantly.

When developers tell you there’s a problem
Developers and architects know when a refactoring effort should be
considered. They can tell you when team productivity, quality, and
morale are suffering. Many times, developers will not be able to
explain the reasons for these problems. This is because poor design
quality is caused by indirect linkages coupling the system in ways
developers are not able to understand. Their mental models will often
differ from how the system is actually structured.

Silverthread CodeMRI® scans analyze a code base so that you can
quantify and visualize design quality problems. This includes a
breakdown of modularity, unacknowledged dependencies, cyclical
dependencies, and other complexities that make systems challenging.

Focus on design quality, not code quality
Figure 3 shows Silverthread design quality visualizations for two
systems: the before and after of a very successful rewrite conducted
by the U.S. Air Force. The left side of the figure shows a C++ system
with a core component (the red box) of files that were cyclically
interdependent. Modularity and controlled dependencies had
degraded, and this component experienced unintended
consequences whenever it was changed. In the refactoring effort, the
team consciously chose to improve design quality rather than

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

replicating the original design. After the rewrite, the new system
showed significantly less cyclicality, better hierarchical control, and a
significant improvement in maintenance productivity and agility.
Improved design quality resulted in better software economics.

Figure 3: Before and after views of a successful refactor effort

Code quality and design quality are complementary product
measures, and both can be extracted objectively from an evolving
code base. Code quality assessments analyze the parts; design quality
assessments analyze the whole. Developers can identify and fix code
quality issues without having much impact on design quality. Code
quality tools identify issues within a part by scanning and analyzing
specific lines of code. Many code quality tools measure McCabe
complexity. SonarQube identifies “bad smells” such as “if” or ”elsif”
constructs with no final “else”; Coverity identifies likely buffer
overflows; and HP Fortify identifies likely security vulnerabilities. But
these tools do not quantify design quality. That is Silverthread’s forte.

When software economic models tell you there’s an ROI
Successful modernization should result in improved design quality
and pay dividends in better productivity, lower cost, lower risk, and
greater business agility. Some systems are challenged, and can
benefit from refactoring. Others have degraded to the point that
rewriting from scratch makes more sense. A refactor or rewrite isn’t
always called for. Sometimes the most financially responsible choice
is to continue incremental maintenance, because the cost of a rewrite
or refactoring might be greater than the benefit.

Silverthread’s CodeMRI® technologies help you explore the ROI of
refactoring, rewriting, or leaving a system as-is. Figure 4 shows
benchmarks from a system that suggest significant challenges. The
scores in the right-hand column identify the percentage of code bases
in our empirical database (compiled from thousands of scanned
projects) that score better than the code base being assessed. Two of
three high-level design quality metrics score poorly relative to
comparable systems. Based on a design quality analysis, statistical
models project that every new 1,000 LOC feature developed in the
system should be expected to take 80+ days to complete, cost over
$50,000, and introduce or expose bugs in 400 LOC. A system such as
this is a strong candidate for refactor or rewrite.

Figure 4: Benchmarks from a Silverthread CodeMRI® report

Give your leadership team the insights they need.
Without diagnostic tools to measure and manage change more
objectively, software maintenance teams will flounder in subjective
guesswork and indecision. Refactoring alone is no guarantee of
success. Successful steering requires leadership to:
• Capture and visualize the design to quantify complexity and

design quality
• Give developers objective information about the architectural

structure and the difference between design intentions and the
as-is coded reality

• Allow development teams to remove design problems and
prevent new ones from emerging

• Monitor progress of design quality improvement and
subsequent software economic benefits

Contact Us
Silverthread’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.
http://silverthreadinc.com

Software	economics 8%

Value Score
Maintainability 379 8%
Number	of	bug	lines	of	code	per	1000	LOC

Agility 83 8%
Days	to	produce	1000	lines	of	new	code

Cost $54,806 8%
Cost	to	produce	1000	lines	of	new	code

Design	quality 38%

Score

Modularity 8%
Based	on	propagation	cost

Cyclicality 8%
Based	on	core	file	density

Complexity 100%
Based	on	high	McCabe	density

