

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

How honest are your software measures?
Process measures are easy to spin and game. Product measures are more honest.

Software systems need more effective measurements.
Software measures in most system development enterprises seem to
reflect the disingenuous spin of politicians more than the matter-of-
fact observations of engineers. That statement is probably an
exaggeration for some people but the cold hard truth for many
others. Although politicians have a well-deserved reputation for
subjective spin and a track record for under-delivering on committed
improvements, many software delivery enterprises do too.

Systems and software industry leaders are justifiably cynical because
our experience with software productivity improvement — internally
from our teams as well as externally from our vendors — is plagued
by subjective spin. While our intentions with measurement are
usually honorable, our know-how is still immature and
compartmentalized. It is difficult, demotivating, and inefficient to sell
and deliver in a market where there is a default bias of uncertainty
and distrust.

Achieving a successful measurement transformation is daunting at
small scale and becomes even more challenging in larger enterprises.
Strong cultural resistance and cynicism resulting from years of
counterproductive measurement practices typically interfere. There
is also a broad spectrum of context-specific differences in defining
progress and quality. As a result, few standard measurement units,
benchmarks of goodness, and measurement practices have gained
broad consensus.

Why are conventional software measurements so ineffective?
The weaknesses of conventional wisdom in software measurement
can be captured in a few probing questions:

• Are you emphasizing the measures of supporting artifacts in
the process pipeline (often noisy) over measures of the
design/code/test artifacts in the product pipeline (mostly
signal)? If you are, the result will be more guesswork and
gamesmanship, and less predictable outcomes.

• Are you measuring things that are useful to management
but not to practitioners (or vice versa)? Either approach can
erode trust between stakeholders.

• Are you measuring individual practitioner performance
rather than team outcomes? Software delivery is a team
sport, and this approach can demotivate people and
encourage individual gamesmanship.

• Are you emphasizing specific targets (position) rather than
trends (velocity)? This can lead to short-sighted decisions
and downstream surprises.

• Are you treating measurement targets as static values
rather than evolving distributions of probable outcomes?
The result can be misleading confidence in forecasted
targets.

These measurement norms are anti-patterns that reflect dishonest,
or less honest, behaviors. Software cost, schedule, and quality targets
are negotiated forecasts. They should be captured as probability
distributions of possible outcomes. The net result of a typical mix of
the anti-patterns listed above is excessive measurement noise that

drowns out the important signals and results in significant overhead,
rework, and waste. Measurement is typically demanded from the top
down and rejected (or even worse, gamed) from the bottom up. In
the middle, where project leadership must connect technical
execution with expected business outcomes, a lot of assumptions,
kludges, and spin are created to appease all the constituencies. The
usual result is high overhead, a lot of unproductive churn, distrust,
and waste.

You probably already use traditional project management measures
like those shown on the right-hand side of Figure 1. These process
measures provide only half of the insight you need, and most of this
insight is subjective or indirectly indicative of progress and quality
because it is derived from supporting artifacts. Design quality and
code quality are the other half, the more honest and important
product measures extracted from the primary artifacts that teams
need to steer software outcomes more objectively and predictably.

Figure 1: Product measures complement process measures.

Building on lean measurement techniques, we need to quantify work
in progress, not activities in process. This means measuring code in
the product pipeline to supplement the less honest measures of
artifacts in the process pipeline. The direct measures of the code base
are more honest and trustworthy mechanisms for steering software
delivery projects. Some enterprises do measure code quality of the
code subjected to unit testing. This is not enough. Decades of
Harvard/MIT research and field experience provide us with strong
evidence that the design quality of the code base subjected to
integration testing correlates better with economic outcomes.

Measurement lessons we have learned
Exploiting practices from positive experiences and avoiding the anti-
patterns lead us to a new starting point, a set of guiding principles for
a more honest measurement approach. These principles are based on
decades of lessons learned in research and field practice.

1. Measure the dynamic characteristics of the product pipeline,
not the process pipeline. Direct measures of the code/test
base are objective facts and mostly signal. Measures of the
process and other supporting artifacts are indirect indicators

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

and more subjective guesses. They are noisier and easier to
game.

2. Better steering involves tradeoffs among competing
dimensions. Efficiency (product agility and process agility) and
effectiveness (design quality and user-perceived value) must
be communicated transparently in objective measures to
provide objective tradeoffs and steering decisions.

3. Forecasted measures should be captured as distributions of
probable outcomes. It is fine to communicate an expected
value, but a more honest exchange would include a discussion
of the variance. Why are you confident (narrow variance)?
Why are you uncertain (wide variance)?

4. Measurement precision and fidelity should improve along the
life cycle. As validated learning increases and uncertainties are
resolved, more precision is appropriate.

5. Software agility is as much a function of design (architecture)
as it is of process. The most important characteristic of
software is that it is “soft.” The faster and easier that software
is to change, the faster and easier it is to achieve any of its
other required characteristics.

6. Metric collection should be automated. Automation
eliminates manual overhead and improves consistency.

Improved measurement of complexity and design quality can increase
trust in software delivery. Increasing trust enables leaner production
by reducing sources of overhead, unnecessary rework, and waste.
Trust is the currency of lean engineering efficiency. The foundations
of modern agile methods and DevOps principles revolve around
delivering software quickly, measuring “velocity,” using smaller batch
sizes, improving feedback cycles, and reducing waste. These
techniques implicitly and explicitly reduce uncertainty by measuring
the primary artifacts of design, code, and test.

Why care about more honest measurement?
There is a hunger for better measurement in software delivery
initiatives across all levels of the enterprise. Demand for more
objective steering and software delivery analytics is coming from
three distinct constituencies with different needs:

1. Enterprise leadership. As software becomes the primary
differentiator within most enterprises, a better understanding
of software-based progress and quality trends has become
paramount to better business predictability.

2. Practitioners. Development and operations professionals will
not tolerate the overhead and waste of measuring noisy
sources, like the process pipeline, and supporting artifacts.
They know that true progress and quality insight come directly
from the dynamics of the product pipeline (the code and test
base), its change trends, and usage feedback.

3. Middle management. Team leaders, architects, project
managers, development managers, and operations managers
have the most acute transformation challenge. The middle
management job, that of translating technical progress of
practitioners into improved economic outcomes demanded by
the enterprise, is where the cultural inertia is most
entrenched.

Persuading practitioners and executives that improved measures are
desirable is usually straightforward. They can easily appreciate the
impact of improved accountability and insight on their daily
responsibilities. Middle managers, however, carry the burden for the
iceberg floating around in most software delivery cultures. They know

that moving to more honest and accurate exchanges of information
is culturally dangerous in a low-trust environment. Consequently,
measurement improvements are best initiated by winning the hearts
and minds of middle managers.

Creating shared measures for all constituencies
In most enterprises, measurement and good governance compete
with practitioner freedom. Here are two recurring observations from
such cultures:

1. Where there is a perception of predictable governance,
management morale is positive but practitioners feel choked
by high overhead and repetitive manual reporting.

2. Where there is a perception of agility, practitioner morale is
positive but management feels out of control with rapidly
changing baselines.

Effective measurement approaches must deliver the critical quid pro
quo illustrated in Figure 2: less overhead and more agility for
practitioners, and predictably better economic outcomes for all
governance stakeholders. When practitioners and leadership are
relying on the same measures, trust will grow.

Figure 2: The critical quid pro quo

Stephen Covey coined the term “the speed of trust” to illuminate the
necessary ingredient in reducing overhead and improving efficiency
and effectiveness: trust. The speed of trust can also be appreciated
by its logical opposite: the slowness of distrust. Overhead activities in
most enterprises are directly proportional to the amount of distrust.
Complexity leads to uncertainty which leads to distrust which leads to
more waste and overhead activity that practitioners hate. More
honest measurement is the foundation for establishing a higher trust
environment among software stakeholders.

Contact Us
Silverthreads’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.
http://silverthreadinc.com

