

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

Steering software projects more predictably
Measuring design quality provides breakthrough insight for steering.

Software delivery outcomes have proven to be inherently
unpredictable, especially at large scale. Figure 1 illustrates project
profiles for two similarly complex DoD systems. Why do similar
projects exhibit such a wide variance in delivering their product?
Complexity. Process complexity and product complexity translate
directly into management uncertainty and unpredictability.

Figure 1: The outcomes of similar projects can vary widely.

Software delivery must manage highly uncertain outcomes.
Software outcomes are highly dependent on continuous
negotiations, accurate predictions, value judgments, innovations,
team collaboration, technical debt, and various economic tradeoffs.
Success is much less dependent on contractual requirements, Gantt
charts, laws of physics, properties of materials, mature building
codes, and certified engineers. In short, steering software projects is
more a discipline of economics than it is of engineering. Unlike most
engineering disciplines, software delivery has more complexity,
hence more uncertainty.

How do we simplify software projects and reduce uncertainty? Better
measurement is a good place to start. Scientists define measurement
as an observation that reduces uncertainty, where the result is
expressed as a quantity. We confront significant uncertainty in
specifying the scope, the design, and the plan, where we are bounded
only by the limits of human imagination. Quantifying the uncertainty
in plans and scope is considered in many projects but is typically
lacking in practice. Quantifying uncertainty in design quality,
however, has been largely unaddressed, even though it is equally
important.

Steering through uncertainty requires a change in mindset.
A steering mindset is well-articulated in The Lean Startup by Eric Ries
(2011). Using this approach, a business case is captured as a
prediction and then tested through a sequence of experiments that
validate a business strategy. Progress is measured not by how much
stuff has been developed but rather by validated learning. The best
way to quantify validated learning is a reduction in the uncertainty
remaining in the plans and design. It makes sense to first test the
riskiest assumptions because these tests result in the largest
reductions in uncertainty, or the most validated learning.

A steering mindset demands a more honest style of leadership, driven
by measurably attacking what you don’t know rather than posting
early demonstrations of what you do know. Project targets should be
represented as probability distributions of possible outcomes. More
honest predictions are achieved by discussing the variance of the
distributions rather than the expected value or the mean.
Performance and predictability are improved by continuously
negotiating and steering toward a moving target.

How do we quantify validated learning?
As illustrated in Figure 2, software designs and plans must be treated
as a sequence of predictions with explicit uncertainty. These
predicted outcomes are measured against evolving evaluation
criteria, not against contracts with the implied certainty of
requirements. Needs and designs emerge over time from a coarse
vision with a wide variance (more uncertainty), to more precise,
testable specifications with narrowing variance (less uncertainty).
Nearly everything is negotiable early in the life cycle, and the feature
set and operational characteristics remain negotiable as tradeoffs
evolve from speculative debates to objective decisions. Project teams
need to plan their activities and early releases to drive integration
testing targets to closure before unit testing targets. This integration-
first spirit is the crux of “shift left” thinking: Testing the design (and
collaborative teamwork) is more important than testing the coded
units (and individuals). What must shift left is the validated learning
of design quality.

Figure 2: Transforming to probabilistic targets for steering

Traditional project management measures focus on the efficiency and
agility of the process. But these process measures provide only half of
the insight you need. Design quality and code quality measures are
the other half, the more important product measures that teams
need to steer software outcomes more predictably. Business agility is
as much a function of product design as it is of process. Better steering
involves tradeoffs among competing dimensions. Efficiency (progress
and process agility) and effectiveness (design quality and product
agility) must be communicated transparently in objective measures
to realize more reliable steering decisions.

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

How can project leadership better reason about uncertainty?
Suppose you need a new software product to be delivered in 12
months. Your leadership team (project manager, architect,
development, and test) analyzes the project scope and constraints to
estimate the resources. You use empirical models to forecast that the
project should take 11 months. Excellent! A traditional project
manager would lay out a detailed plan for 12 months, nail down the
requirements more precisely, and plan on conducting an early design
review to demonstrate quick progress. The team would feel confident
with an extra month in the schedule.

A more enlightened team understands that the schedule estimate is
the mean of a more complex random variable. They ask to see the
range of possible outcomes, as in the top diagram of Figure 3.

Figure 3: Modern reasoning of delivery targets

The team wants to go into the project with a 95% expectation of
delivering on time. The baseline distribution exposes that about half
of the outcomes will take longer than 12 months, with only about a
50-50 chance of delivering on time. The reason for the broad range of
outcomes is the significant uncertainty in the various input
parameters, reflecting the team’s lack of knowledge about the scope,
the design, and the plan. The input parameters to the estimation
models are also predictions (random variables) with some significant
uncertainties. Consequently, the variance of the distribution of
outcomes is wide.

As Figure 4 shows, there are three ways to move forward:
• Option 1: Move the delivery date out to 15 months to ensure

that 95% of the outcomes complete within the target date.
• Option 2: Rescope the work, eliminating some of the features or

backing off on quality targets, so that the target estimate moves
up to 9 months and 95% of the outcomes complete in 12 months.

• Option 3: Explicitly reduce the uncertainties in the scope, the
design, the plans, the team, the platform, or the process.

The first two options are usually unacceptable to external
stakeholders, leaving the third option as the commonly preferred
alternative. The leadership team lays out a sequence of demonstrable
capabilities, starting with the architectural foundation and resolving
the largest sources of uncertainty first. Each intermediate milestone
results in a measurable checkpoint from which the variance in the
forecasts can be reduced and the predictability of delivering on time
improved.

A conventional mindset ignores the big uncertainties in the design,
postponing resolution until early project momentum is built up by
tackling the straightforward tasks. More enlightened software
leadership attacks the bigger uncertainty sources like design tradeoffs
first, perhaps showing less early progress, but increasing the
probability of long-term success. This stark comparison illustrates the
difference in mindset between the plan-and-track mentality of
conventional engineering governance and the predict-measure-steer-
and-adjust mentality of steering leadership culture.

Deterministic planning kills trust because everyone knows it doesn’t
match the reality of the software development world and its
uncertainties. Communicating plans and targets probabilistically and
explicitly quantifying the uncertainty in design, scope, and planning
builds trust because this approach more honestly portrays our
understanding of where we are and how to resolve uncertainty and
reason about the future objectively.

Complexity and design quality can be quantified.
After 15 years of research across thousands of diverse software
systems, Silverthread has pioneered the use of design structure
matrices (DSMs) to visualize design quality and architectural
complexity. Figure 4 illustrates examples of DSMs on opposite ends
of the quality spectrum.

Figure 4: Design complexity is a dominant source of uncertainty.

The modular structure on the left exhibits locally tight coupling within
components but relatively loose coupling among components. The
alarming structure on the right exhibits tight coupling across a large,
dominant core component with more loosely coupled peripheral
components.

The most important characteristic of software is that it is “soft.” The
easier software is to change, the easier it is to achieve any of its other
required characteristics. Understanding and quantifying design
quality translates into less uncertainty, more benign changes, and
more predictable project steering.

Contact Us
 Silverthread’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.

