
Why Agile Fails: Great Methodology Can't
Circumvent Complex Design

In the past decade, agile practitioners have maintained that improving software 

development processes is the path towards efficient software production. Agile 

methodology has created great progress in developing and monitoring a productive 

software culture. Still, many organizations are running into a wall: applying lean 

principles can only increase progress so much. This is because velocity 

measurement, planning poker, attacking defect backlogs, Kanban cards, pair 

programming, or sprint-based planning does little to attack the root cause of 

inherently structural problems. If humans can’t easily understand or modify their 

code, teams might be using the best agile practices, but their ability to respond to 

market demands will be far from agile. Technical debt will weigh down the value 

stream’s performance.

Silverthread’s bread-and-butter is the visualization and quantification of software 

modularity and its erosion. Insight into this typically invisible element of software 

production has shown strong correlations between architecturally complex software 

and organizations in which agile methodologies have been attempted and failed. 

Opaque internal complexity prevents timely additions by increasing the effort 

needed to change, adding non-value-add effort to each new element. Additionally, 

architecture degradation can lead to technical bankruptcy. Typical change in US gov 

code base takes 80 days, which is fundamentally incompatible with the 15-day Agile 

sprint.

If you use agile processes in non-agile product architecture, you’ll get faster at 

delivering non-value. The architecture will become the biggest bottleneck to your 

DevOps transformation. A balanced focus on agile processes and agile architecture 

is crucial. With this approach, your organization can sustain excellence and succeed 

at the pace of delivery enabled by DevOps.




